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We propose that the geometric and standard gauge field aspects O f gravity are 
equally essential for a complete description of gravity and can be reconciled. We 
show that this dualism of gravity resolves the dimensional Newtonian Constant 
problem in both quantum gravity and unification schemes involving gravity (i.e., 
the Newtonian constant is no longer the coupling constant in the gauge aspect 
of gravity) and reveals the profound similarity between gravity and other fields. 

1. INTRODUCTION 

The geometric theory of gravity, general relativity (GR), accounts very 
well for all known astronomical gravitational phenomena. However, there 
are two long-standing problems in gravitation physics. First, there is no 
consistent quantum theory of gravity (Alvarez, 1989). An essential difficulty 
in the quantization of geometric theories of gravity is caused by the dimen- 
sional Newtonian constant G, and leads to nonrenormalizable quantum 
field theories (Weinberg, 1972; 't Hooft and Veltman, 1974). Second, many 
disparate approaches to unify gravity with other forces have been proposed 
without success, because of the geometric nature of GR and its failure to 
conform to the pattern of the other gauge theories. Fundamental differences 
between a Yang-Mills theory and GR are: 

(A) The structure of the Einstein equation and the corresponding Lag- 
rangian differ from that of a Yang-Mills theory. The interpretations of 
corresponding quantities, such as h ~v (h ~176 is proportional to the Newtonian 
potential ~bg) and A u (A ~ is proportional to the Coulomb potential ~bc), are 
different, although ~bg and ~bc have the same physical meaning. 

(B) Geometric theories of gravity are associated with spacetime groups, 
while Yang-Mills theories are associated with internal groups. 
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(C) The coupling constant G has a dimension, while the coupling con- 
stants in other interactions are dimensionless. Facing these difficulties, it has 
been suggested that (apart from technical developments) there might have 
to be one or more major conceptual revolutions before the final goal is 
achieved (Isham, 1975; Duff, 1975; Mills, 1989). 

In our view, a fundamental question behind these problems is: What is 
gravity really? Is gravity a manifestation of the curvature of spacetime, or a 
standard gauge field like other interactions? How are we to reconcile these 
two descriptions? Differentphysicists have different opinions on these ques- 
tions. This contradictory picture of describing gravity reminds us of the great 
controversy that arose after de Broglie proposed his matter wave concept: 
are electrons particles or waves? In this paper we will explore a new avenue 
to bridge the geometric and gauge field aspects of gravity, resolve the dimen- 
sional Newtonian constant problem, and eliminate the fundamental differ- 
ences between GR and Yang-Mills theories. 

2. MAXWELL-YANG-MILLS-TYPE EINSTEIN EQUATION 

First, we show that, in spite of its geometric interpretation, the Einstein 
equation greatly resembles the Maxwell and Yang-Mills equations. This 
similarity will allow us to follow the example of quantum eleetrodynamics 
(QED) step by step, and lead us to a new concept. The Einstein equation, 

R ~ v _ �89 v R = (8zG/c 4) T" v (I) 

also has a well-known different form (Weinberg, 1972; Gupta, 1957; Deser, 
1970; Wald, 1986): 

/7" v'xX-/7 "a' vx + r/" ~h'a/~'/3a - r/" ~hV~'~ a = -(I 6zG/c4)(T" ~ + t ~ ~) 
(2) 

-2,1 . . . .  (p, v=  1,2, 3,4) 

where t "~ is the energy-momentum tensor of gravity. 
Defining the tensor gravitational field "strength" 

G u ~ -=- ( I/4) (/Y u v.x _/7. x. ~ + q. v/Ta~. ~ _ r/U ~/~.a) (3) 

we find that equation (2) yields the Maxwell-Yang-Mills-type equation 
(Peng, 1983, 1986) 

t3G ~'~ 4zG 
(~X~ -- C4 ( T" v + t"") (4) 
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The Lagrangian for equation (4) in quadratic terms of G "~x is 

17 4 
L = - - -  G"~':~G.,,:~ + ~u VT, ~ + L(2) (5) 

16toG 

The t 'a~ term is given by L (2) (Alvarez, 1989; Gupta, 1957; Deser, 1970; 
Wald, 1986). To discuss t "~ in detail is beyond the scope of this paper. 

Under the weak-field and low-velocity limit, equation (4) reduces to the 
Newtonian gravity and vector gravitomagnetic equation (Braginski et al., 
1977) 

V x B ~ ~ - 4 z r  G / c ' T  0, Be ~ -= �88 • h ~ (6) 

Now h ~ = (h ~ h ~ h ~ has a dual interpretation, either as a vector gravito- 
magnetic potential in equations (4)-(6), or as a portion of the metric tensor 
in equations (1), (2). The detection of vector gravitomagnetic effects is one 
of the frontiers in gravitation physics (Wheeler, 1988). It is natural to anticip- 
ate that the similarity between the Einstein equation (4) and a YangTMills 
equation is profound, and reflects the intrinsic nature of gravity, i.e., the 
gauge field aspect of gravity. 

3. THE G DILEMMA 

We reexpress the difficulties related to G in quantum gravity and unifica- 
tion to help us to see the situation clearly. The Einstein geometric and Yang- 
Mills-type equations (1) and (4) are in the meter-kilogram-second (MKS) 
system of units, in which the h "v are dimensionless as required by the geomet- 
ric picture of gravity. Let us recall the Maxwell equation in the MKS system 
(Appendix). Corresponding to G, one has K in the Maxwell theory. Both G 
and K play similar roles. In order to quantize electrodynamics, the Maxwell 
equation is written in the Heaviside-Lorentz (HL) system of units, in which 
the charge q is converted to Qe = q(4JrK)  j/2 and F ~ v / ( 4 7 r K ) l / 2 ~  F " L  Then 
K disappears, and the coupling constant is Qe. When we take ~i = c = 1, Qe 
is dimensionless. 

If one simply defines Qg -- mg(4~rG)l/2 as the gravitational mass charge 
(Hsu, 1979) and coupling constant, then G would disappear, but the geomet- 
ric interpretation of the Einstein equation would be destroyed, because this 
replacement would give the metric tensor a dimension. The scalar curvature 
R is not scale invariant. 

Table I summarizes the conflicting situations related to G. 
According to the correspondence principle, a satisfactory quantum 

theory of gravity must reproduce GR at the macroscopic level. Without G, 
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Table I. The G Dilemma 

With G Without G 

Classical level Geometric interpretation Valid Destroyed 
Correspondence principle Valid Violated 

Quantum level Perturbative quantization Impossible Possible 
Unify with other forces Difficult Possible 

the geometric interpretation would be violated. With G as a coupling con- 
stant, gravity cannot be quantized perturbatively. Even if finally gravity were 
to be quantized nonperturbatively (Deser, 1980; Ashtekhar, 1986), there 
may still be problems in unification, since G (analogous to the Fermi dimen- 
sional coupling in the Fermi weak theory) has the potential of causing 
difficulty in unification (Slansky, 1984). This is indeed a profound dilemma: 
G is needed at the classical level, but not at the quantum level. We call this 
"the G dilemma," which indicates that the geometric aspect of gravity alone 
woves inadequate for the full description of gravity. 

4. DUAL GEOMETRIC-GAUGE FIELD ASPECTS OF GRAVITY 

We will resolve the G dilemma by rethinking the nature of gravity, i.e., 
modifying the geometric interpretation of gravity to a certain extent. We 
introduce a new concept, dual geometric-gauge field aspects of gravity. More 
specifically, the dualism of gravity states: (1) When one quantizes gravity 
and unify it with other quantum fields, gravity should be considered as a 
standard gauge field; (2) when one deals with astronomical phenomena, the 
geometric description of gravity is the best choice; (3) there are phenomena, 
such as gravitational waves and the effects of gravitomagnetic fields (or 
dragging of inertial frames), which can be equally well explained by the 
geometric and gauge field aspects of gravity; and (4) the two aspects can be 
reconciled, which ensures the correspondence principle. 

The root of the dualism of gravity is actually in the Einstein theory, 
which associates a physical entity T ~v with geometry R. Thus, there must 
be a dimensional constant to connect T uv and R, which is G, 

geometry R a energy-momentum T "v 

In contrast, only dimensionless constants are needed to couple physical 
currents and physical fields in a Yang~Mills theory, 

gauge fields ~ currents jiu 



Dual Geometric-Gauge Field Aspects of Gravity 

Table 11. Dual Aspects of Light and Gravity 
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Light Gravity 

Newtonian scheme Newtonian particle Newtonian force 
Classical level Wave Geometry 
Quantum l e v e l  Particle-wave Gauge field-geometry 

With this structure, electroweak and strong forces are quantized and unified. 
Since no one has been able to find a geometric model for the description of 
matter, a possible way to cure the G dilemma is to consider gravity as a 
gauge field at the quantum level. The dualism of gravity is an analogue of 
the dual wave-particle properties of light (Table II). 

5. A RESOLUTION OF THE G DILEMMA AND 
RECONCILIATION OF THE TWO ASPECTS 
OF GRAVITY 

To test the dual concept, we apply it to resolve the G dilemma. The 
structure and interpretation of physical laws are independent of the choice 
of the system of units. The statement (1) of the dualism of gravity requires 
us to treat the Einstein equation (4) as a physical law and allows us to 
change the system of units to a convenient one regardless of the unit of h -'v, 
i.e., without considering the geometric interpretation. Considering the gauge 
field aspect of gravity, we convert the gravitational mass charge mg to 
Qg==_mg(47rG) 1/2, unit [Qg]=mv/N, and Cevz/(4rrG)I/2--*G - ~ .  Equations 
(4) and (5) become, respectively, 

~G ~ v~ 1 
Ox z - c2 (TU~ + t ~ )  (7) 

1 ~,~ 1 
L= - -  G G~,v.~ +-- 5 tT"VTuv + L  ~2) (8) 

4 c 

where G no longer exists. The coupling constant which couples energy- 
momentum and the gravitational gauge field is Qg, 

gravitational gauge field ~-~ energy-momentum T uv 

When take h = c = 1, Qg is dimensionless. The Lagrangian in quadratic terms 
of the field strength G ~ vx might cure the divergence problem in quantization 
(DeWitt, 1965; Yang, 1974; Szczyrba, 1987). Equations (7) and (8) form a 
basis for quantum gravitodynamics and unification involving gravity. 
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In this new system of units, called the gravitational Heaviside-Lorentz 
(GHL) system of units, ~,v has the unit of potential, which should not 
surprise us, because h ~176 is proportional to the Newtonian potential, h ~ is the 
vector gravitomagnetic potential, and h ~ describe gravitational waves. This 
leads us to define h "v as the gauge potential. In contrast, the tetrad and 
affine connection [they are not dynamically independent gauge potentials at 
all (Isham, 1975; Duff, 1975; Mills, 1989)] have been defined as gauge 
potentials in some gauge theories of gravity associated with spacetime 
groups. 

The extension from Newtonian gravity to the Maxwell-Yang-Mills- 
type gravitation equation (7) resembles very much the extension from the 
Coulomb law to the Maxwell theory and to the Yang-Mills theory. The 
comparison between the Maxwell theory and equations (7) and (8) (Appen- 
dix) shows the following: 

1. The profound similarity between the gauge field aspect of gravity 
and the electromagnetic field is revealed in the HL system of units: not 
only do the field equations and the Lagrangians have similar form, but the 
corresponding quantities have the same units; and thus the same physical 
interpretations, such as coupling constants Qg and Qe, gauge potentials h "~ 
and A m, and field strengths G "v~ and F "~. The fundamental differences (A) 
and (C) mentioned in the Introduction are eliminated. 

2. Equations (7), (4), and (1) are mathematically equivalent, but the 
geometric interpretation is no longer valid in the gauge field aspect of gravity 
in the GHL system of units, which is the only price we pay for resolving the 
G dilemma without destroying the geometric aspect of gravity in the MKS 
system of units. Of course, when we convert back to the MKS system, G 
will be restored, the gravitational gauge field equation (7) will be converted 
to the Einstein equations (4) and (1) with geometric interpretation, and all 
of the results obtained in the GHL system of units can be converted to the 
results of Einstein geometric equation. 

3. The weak equivalence principle (WEP) in the gauge aspect is still 
valid and states now that the gravitational and inertial masses are equal; the 
ratio of gravitational mass charge Qg to the gravitational mass mg is a 
constant, (4nG)1/2; particles with different masses in a gravitational field 
have the same acceleration. Einstein's elevator still works. 

6. CONVERSION BETWEEN SPACETIME AND 
INTERNAL SYMMETRIES 

As mentioned above, the geometric aspect of gravity is associated with 
a spacetime symmetry, while a Yang-Mills gauge theory is associated with 
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internal symmetry. If the dualism of gravity is intrinsic at all, it must satisfy 
a criterion that the gravitational gauge field should be associated with an 
internal symmetry, and that the internal symmetry should be able to be 
converted to a spacetime symmetry in the geometric aspect of gravity. 

At the classical level, the sources of gravity are just the energy and 
momentum distributions associated through Noether's theorem with the 
spacetime translation group. It has been claimed that a successful extension 
of GR to the quantum level must take into account spin; thus, the symmetry 
group should be the Poincar6 group. It is not our purpose here to select a 
specific group for classical or quantum gravity. Rather, we show, by analyz- 
ing an example, that the dualism of gravity is capable of satisfying this 
criterion as long as the generators of symmetry groups contain the gravita- 
tional mass charge Qg. 

Let us consider the time translation group T O with generator pO, which 
produces the transformation 

exp[(i/h)P~ x6 = Xo + ao (xo = ct) (9) 

where a0 is the time displacement. In the MKS system of units, 

unit [poao/h]=unit [mic2t/h]=unit [mgCet/h] (WEP) (10) 

When we consider the gauge field aspect, we convert to the GHL system of 
units. The nature of the symmetry of gravity will not change. The unit of 
the generator is changed [absorbing (41rG) ~/2 into pO]. To keep the argument 
of the exponential dimensionless, the displacement a ~ has to be changed to 
a~ I/2. In the GHL system of units, we have 

unit [reSt~h] = unit [QgOg/h] (11) 

where 

Og=_-c2t/(47rG) 1/2 and unit [Og]=,,/~s (12) 

To see what Og is, now let us compare Og with the internal space of 
QED. Since both the gravitational and electric charges Qg and Qe have the 
same unit and are the generators of the internal symmetry groups of gravity 
and QED, respectively, we expect that the coordinates of both internal spaces 
will have the same unit. To show this, let us recall the U(1) group of QED, 
which is a transformation (Yang, 1980), exp[(i/h)QeOc]. Then we have 

unit [0c] = v/Ns (13) 



1322 Peng and Wang 

which is the same as that of 0g, as expected. Therefore the internal spaces 
of both QED and gauge field gravity may be unified into a higher-dimension 
internal space. The T O is a dual group in the sense that it presents both a 
time translation in the geometric aspect of gravity and a timelike translation 
in the internal space in the gauge field aspect of gravity. In other words, the 
internal translation Ti~ converts to the time translation T ~ and vice versa. 
When we convert to the MKS system of units, the internal space associated 
with gravity (or QED) will (or will not) be converted into spacetime. A 
similar phenomenon, of isospin converting into spin, occurs in a quantum 
system (Jackiw and Rebbi, 1976; Li, 1985). Therefore, from the point of 
view of gauge theory, the index/~ of G ~vx and h u~ is also a group index, i.e., 
it is a dual index. For consistency, we will use G;~Z and h i~ in the GHL 
system. 

We have shown that the fundamental differences mentioned above are 
actually between the geometric aspect of gravity and a Yang-Mills theory, 
and that there are no such fundamental differences at all between a Yang- 
Mills theory and the gauge field aspect of gravity. This supports our assump- 
tion that the standard Yang-Mills gauge field aspect is indeed the intrinsic 
nature of gravity, and suggests a simpler way for unification involving 
gravity. 

7. DISCUSSION 

Gravity exhibits both geometric and standard gauge field aspects. One 
of the two aspects alone proves inadequate for the full description, but the 
two aspects together fully explain gravity. The way we treat gravity as a 
gauge field is quite different from that of other gauge theories of gravity. 
We completely separate the geometric and gauge field aspects of gravity, 
and then show how one aspect can be converted into another, while other 
gauge theories combine the gauge principle and Einstein's covariant principle 
(with the Newtonian constant G) throughout the whole treatment. The 
GHL system of units is more appropriate than the MKS unit system for 
describing the gauge field aspect of gravity. We anticipate that gravity can 
be quantized perturbatively, based on three reasons: (1) gravity is the weak- 
est force; (2) the coupling constant Qg is dimensionless ( h = c =  1); and (3) 
the Lagrangian is in a quadratic term of G i~'v. The facts that the G dilemma 
can be resolved by the dualism of gravity, and that the proposed similarity 
between the gauge field aspect of gravity and Yang-Mills gauge fields is 
revealed, indicate that the geometric-gauge field dualism of gravity contains 
the ingredients for a satisfactory description of gravity, and will prove fruit- 
ful for further developments. 
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A P P E N D I X  1. C O M P A R I S O N  B E T W E E N  E I N S T E I N  A N D  

M A X W E L L  E Q U A T I O N S  
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Maxwell Einstein 

Geometric equations 
MKS units 

R" ~ - �89 ~R = (87rG/e 4) T u ~ 

4 

L = - 1 6 7 r G  ~/g R + L~tt~- 

Gauge field equations 
MKS units 

~F vz 4 ~ r K j v  OG ~'~z 4~_G ( T ~ + t ~ )  
Ox a c 2 Ox a c 

F ~ = A ~''~ - A ;~'~ G ~ ~z = �88 ~.z _ ~uz. ~) 

L c2FV;tFv;t JUAt~ L c4G~ZGu~;t I -h ' "Tu , ,+L  ~2) 
l&rK 16~zG 

F =  K q q / r  2 F =  Gmdng/r  2 

unit [q] = ~ unit [mg] = kg 
unit [A ~] =m N/e unit [h u~] = 1 
U(I) : exp[(i/h)q 0~] T~ exp[( i/li)p~ 
unit [0e] =m N s/0. unit [xo] =m 

Heaviside-Lorentz units 

OF "z - 1 j ~  OG ira_ 1 ti~) 
Ox ~ e Ox z c 2 (Ti~ + 

L = - 1_ FVaF,,)~ _ 1 jUAu 
4 c 

F =  QeQ~/4rcr 2 

unit [Q~l=m x/~ 
unit [A'I =x/]~ 
U(1): exp[ ( i/li)Q~O~] 
unit [0~] = s , ~  

1 ~,~ tT~"T~v (2) 
L = - ~ G  ' G , v ~ + - ~ + L  

F =  QgQg/4trr 2 

unit [Q~] =m 
unit [fi ' l  = ~  
TO: exp[(i/h) QsOg] 

unit [0g] = s x/~ 

Ò, Coulomb; m, meter; N, Newton; s, second; kg, kilogram. 
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